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In this paper we relate the rate of weighted polynomial approximation to some
weighted moduli of smoothness for so-called doubling weights. We shall also
consider the problem in a more restrictive sense for generalized Jacobi weights with
zeros in the interval of approximation. These zeros constitute a special problem that
has not been resolved so far in the literature. � 2001 Academic Press

1. INTRODUCTION

A central topic in polynomial approximation is to connect the rate of
approximation to smoothness properties of functions. The core of this
theory lies in Jackson's theorem and its Stechkin-type converses. Although
for the trigonometric case the direct and inverse results had been proven to
be matching pairs long time ago, for algebraic polynomial approximation
the correct formulation of the Jackson inequality and its converse was done
only fairly recently in [2]. To formulate the results we need the following
definitions: Let w be a weight function on the interval [&1, 1]. The best
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weighted approximation with weight w of a function f by polynomials of
degree at most n is defined as

En( f )w= inf
deg(Pn)�n

&w( f &Pn)&,

where, and everywhere in this paper, & }& denotes the supremum norm on
[&1, 1]. Note that in this setting both w and f can have singularities. One
of the main objectives of approximation theory is to characterize the rate
of decrease of En( f ) in terms of some smoothness properties of functions.
In most cases smoothness is defined via the so-called r th differences of the
function,

2r
h g(x)= :

r

s=0

(&1)s \r
s+ g(x+(r�2&s) h).

I turns out, that for a correct formulation of the Jackson theorem in the
algebraic case we need to modify the step size h here by the function

.(x)=- 1&x2;

therefore we set

|r
.( f, {)w= sup

0<h�{
&w(x) 2 r

h.(x) f (x)&,

where it is understood that if any of the arguments (x+(r�2&s) h.(x)) in
the expression of 2r

h.(x) f (x) lies outside [&1, 1], then we set this dif-
ference equal to 0. With this we have in the unweighted (w#1) case the
two inequalities (see [2, Theorems 7.2.1 and 7.2.4])

En( f )�C|r
. \f,

1
n+ (1.1)

and

|r
. \f,

1
n+�

C
nr :

n

k=0

(k+1)r&1 Ek( f ). (1.2)

In particular, if 0<:<r, then

En( f )=O(n&:) � |r
.( f, t)=O(t:). (1.3)

The aim of this paper is to extend these results to weighted cases. For
some special classes of weights polynomial approximation was considered,
e.g, in the works [1, 2, 5]. However, the case when the weight function has
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a zero inside the interval poses special difficulties, and has not been discussed
in the literature.

The estimates we prove are in the form of (1.1) and (1.2), and they are
true regardless if f has singularities or not. It is not our aim here to analyse
when the right hand side in the analogue of (1.1) tends to zero, although
we shall comment on this problem at the end of this section after formulat-
ing Theorem 1.4.

We start with a very general class of weights, namely the so called doubling
weights. We say that the weight function w defined on [&1, 1] is a doubling
weight, if there is a constant L (called the doubling constant) such that

|
2I

w�L |
I

w (1.4)

for all intervals I/[&1, 1], where 2I denotes the interval that we obtain
when we enlarge I twice from its midpoint (note that parts of 2I may lie
outside [&1, 1], where we set w=0). However, this is a too general weight
concept for weighted approximation (e.g., a doubling weight need not be
bounded and may vanish on a set of positive measure); therefore we shall
consider certain averages of the weight over intervals of small length related
to the degree of the approximation. We set

wn(x)=
1

2n(x) |
x+2n (x)

x&2n (x)
w(u) du, (1.5)

where

2n(x)=
- 1&x2

n
+

1
n2

is the familiar function from polynomial approximation. For convenience
we also define w0(x) to be w1(x). The doubling condition is equivalent (see
[3, Lemma 7.1]) to

wn( y)�K(1+n |x& y|+n |- 1&x2&- 1& y2| )s wn(x), (1.6)

for n # N and x, y # [&1, 1] with some constants K and s.
Now the analogue of (1.1) and (1.2) is

Theorem 1.1. Let w be a doubling weight and let r be a positive integer.
Then there is a constant C depending only on r and the doubling constant of
w such that we have for any f

En( f )wn
�C|r

. \f,
1
n+wn

. (1.7)
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Conversely,

|r+2
. \f,

1
n+wn

�
C
nr :

n

k=0

(k+1)r&1 Ek( f )wk
. (1.8)

Note that the upper estimate can be applied with |r+2, as well, so (1.7)
and (1.8) constitute matching positive and converse estimates, e.g., we can
state

Corollary 1.2. If w is a doubling weight, then for 0<:<r we have

En( f )wn
=O(n&:) � | r+2

. ( f, 1�n)wn
=O(n&:). (1.9)

Thus, as opposed to the unweighted case, here we need somewhat higher
order of smoothness for the characterization of the order of approximation
En( f )=O(n&:). This is necessary when we are dealing with such general
weight concept as doubling weight, as the next example shows. Let w(x)=
|x|&# for some 0<#<1. Then this is a doubling weight, and it is easy to
see that wn(x)tmin[ |x|&#, n#], where t means that the ratio of the two
sides is bounded from below and from above by two positive constants.
Consider the function f (x)=x log 1�|x|. It is well known, that this is a
smooth function in the sense that

&22
h f &�Ch, 0<h<1.

Therefore,

&wn22
h f &�Cn#h, 0<h<1,

and hence |2
.( f, 1�n)wn

=O(n#&1), which implies by (1.7)

En( f )wn
=O(n#&1).

On the other hand,

|1
.( f, 1�n)wn

�wn(0) | f (1�2n)& f (&1�2)|tn#&1 log n,

which shows that (1.9) is not true with |r+2 replaced by |r (r=1) as
in (1.3) (we do not know if the inequality (1.9) holds with |r+1 instead of
|r+2).

Next we discuss a class of weights where |r+2 can be replaced by |r in
(1.8). We say that w satisfies the A* property if there is a constant L (called the
A* constant of w) such that for all intervals I/[&1, 1] and x # I we have

w(x)�L
1
|I | |I

w. (1.10)
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This is stronger than the doubling property (see [3, Theorems 2.1 and 6.1]),
nevertheless many bounded weights satisfy it. Let us also note that (1.10)
allows high order zeros for w.

For A* weight we have the following

Theorem 1.3. Let w be an A* weight, and let r be a positive integer.
Then there is a constant C depending only on r and the A* constant of w such
that for any f

En( f )wn
�C|r

. \f,
1
n+wn

, (1.11)

and conversely

|r
. \f,

1
n+wn

�
C
nr :

n

k=0

(k+1)r&1 Ek( f )wk
. (1.12)

Let us mention that the proof yields for the converse inequality the
somewhat sharper form

|r
. \f,

1
n+wn

�
C
nr :

n

k=0

(k+1)r&1 Ek( f )wn
. (1.13)

Indeed, this is a sharper form, for the properties of w imply that wn(x)�
Cwk(x) for all x and k�n with a constant C. Notice also that if w is a
doubling or an A* weight, then so are wn for every m with a doubling
or A* constant independent of m. If one combines this with the fact that
in such cases we have (wm)n twm for n�m, one can obtain various
inequalities involving the averages wm , for example, in (1.11) and (1.13)
one can replace the weights wn by any wm with m�n.

Next we address the question if one can replace in our theorems the
weight wn by w, i.e., if we can get the complete analogues of (1.1) and (1.2)
for the weighted case. To indicate the difficulty in such extensions, let us
consider the following example. Let w be a so called generalized Jacobi
weight of the form

w(x)= `
N

j=1

|x&xj |
#j, (1.14)

where &1�x1< } } } <xN�1 are distinct points, and where the #j 's are
positive numbers. Consider now any zero of this weight, say xj lying in
(&1, 1), fix h>0, and for an '>0 that will tend to zero consider the
continuous function f' that vanishes outside [xj&', xj+'], it equals '&#j �2
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at xj and linear on the intervals [xj&', xj] and [xj , xj+']. Clearly, for
this f' the norm &wf' &[&1, 1] tends to 0 as ' � 0. However, for '<h

w(xj+rh�2) |2r
h f (xj+rh�2)|=w(xj+rh�2) | f'(x j)|�c \ h

- '+
#j

,

which is as large as we wish if ' � 0.
This example shows the difficulty in forming the weighted moduli of

smoothness when there is a zero in the weight, for, as we have just seen,
in weighted spaces the norm is not bounded under translation. As another
indication that internal zeros may cause trouble let us recall the following
results from [4] on weighted Jackson�Favard inequalities.

Theorem A. Let w be a generalized Jacobi weight (1.14) and r a positive
integer. Suppose, that if xj {\1, then, the corresponding #j is either not an
integer, or it is bigger than r. Then there is a constant C depending only on
r and w, such that for all functions f for which f (r&1) is locally absolutely
continuous on (&1, 1)"[xj]N

j=1 , we have

En( f )w�
C
nr (&wf (r).r&+&wf &). (1.15)

Theorem B. Let w be a generalized Jacobi weight (1.14) and r a positive
integer. Suppose, that for some xj {\1 the corresponding #j is a positive
integer not bigger than r. Then there exists a function f such that f (r&1) is
locally absolutely continuous on (&1, 1)"[xj]N

j=1 ,

&wf (r).r&+&wf &

is finite, and still

lim sup
n � �

En( f )w

log n�nr>0. (1.16)

Therefore, in the presence of internal zeros the Jackson�Favard inequality
is not necessarily true.

To overcome the aforementioned difficulties with forming weighted moduli
we shall modify their definition in the following way. Let w be the generalized
Jacobi weight of (1.14). We assume x1=&1 and xN=1 with the agreement
that #1 resp. #N is zero if &1 resp. 1 is not originally among the points xj .
For an h>0 consider the intervals

I1, h=[&1, &1+h2], IN, h=[1&h2, 1],
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and

Ij, h=[xj&h, xj+h], 1< j<N, (1.17)

and

J1, h=[&1+h2, x2&h], JN&1, h=[xN&1+h, 1&h2],

and

Jj, h=[xj+h, xj+1&h], 1< j<N&1. (1.18)

Then the Ij, h 's are lying around xj , the Jj, h 's are the complementary
intervals and altogether these intervals form a decomposition of [&1, 1].

In forming our modified moduli of smoothness we shall consider the
weighted norm of 2r

h. f on the intervals Jj, h , and to their sum we add some
additional terms that ``connect'' the parts of f lying on these intervals. We
set

|r
.( f, {)*w = :

N&1

j=1

sup
0<h�{

&w(x) 2r
h.(x) f (x)&Jj, h

+ :
N

j=1

inf
deg(Pr&1)�r&1

&w( f &Pr&1)&Ij, {
, (1.19)

where we agree that when forming the norm

&w(x) 2r
h.(x) f (x)&Jj, h

we set the symmetric difference equal to zero if the interval [x&(r�2) h.(x),
x+(r�2) h.(x)] does not belong to Jj, h .

As one can see this modulus of smoothness consists of two parts: one
part is formed like the usual moduli of smoothness (in [2] such moduli
were called main part moduli), and the other part is just the best approxi-
mation of f by polynomials of the fixed degree r&1 over small intervals. To
see why we need the second part consider that if f is linear on each of
[xj , xj+1], then the first part vanishes identically (provided r>1), so
without this second part our modulus of smoothness could not possibly be
used in Jackson-type estimates. We also note that similar second parts have
already been utilized in approximation theory, see, e.g., [2, Chap. 11].

Now with this new modulus of smoothness we can prove
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Theorem 1.4. Let w be a generalized Jacobi weight (1.14). Then there is
a constant C depending only on r and the weight w such that for any f

En( f )w�C|r
. \f,

1
n+

*

w
, (1.20)

and

|r
. \f,

1
n+

*

w
�

C
nr :

n

k=0

(k+1)r&1 Ek( f )w . (1.21)

Note that the first part of this theorem improves upon Theorem A. Let
us also note that (1.20) is true regardless of smoothness properties of f.
However, it may happen that the right hand side in (1.20) does not tend
to zero as n � �. In fact, for generalized Jacobi weights (1.14) the modulus
of smoothness |r

.( f, t)*w tends to zero as t � 0 if and only if the function f
is continuous on [&1, 1] except perhaps at the points xj , where w(x) f (x)
� 0 as x � xj . The sufficiency of this condition immediately follows if we
take Pr&1 #0 as test polynomials in the definition (1.19). On the other
hand, if |r

.( f, t)*| � 0 as t � 0, then it follows from the theorem that
En( f )w � 0 as n � �. Thus, for every k we can choose a polynomial Pnk

such that

&w( f &Pnk
)&<

1
k

.

This shows first of all that f has to be continuous away from the nodes xj .
Furthermore, since w(x) Pnk

(x) � 0 as x � xj , it follows that w(x) | f (x)|�
1�k if x is sufficiently close to any of the xj 's, and this proves that w(x) f (x)
� 0 as x � xj .

2. PROOF OF THEOREMS 1.1 AND 1.3

We shall simultaneously prove Theorems 1.1 and 1.3. The proof follows
well known paths.

We introduce the K-functional

Kr( f, t)w= inf
g (r&1) # ACloc

(&w( f &g)&+tr &w.rg (r)&). (2.1)
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Recall that .(x)=- 1&x2. In [2, Theorem 2.1.1] it was proven that in the
unweighted case the (unweighted) modulus of smoothness |r

.( f, t) is
equivalent to this K-functional in the sense that

1
C

|r
.( f, t)�Kr( f, t)�C|r

.( f, t).

Now if we check that proof we can see that the same inequality with 0<
t�1�n holds true for wn ,

1
C

|r
.( f, t)wn

�Kr( f, t)wn
�C|r

.( f, t)wn
, 0<t�1�n. (2.2)

In fact, in all of the estimates in [2] the weight wn(x) can be inserted if we
take into account that |x& y|�M2n(x) implies

1
CM

�wn(x)�wn( y)�CM (2.3)

with a constant CM depending only on M, which is an immediate conse-
quence of (1.6).

Now we make use of the following Jackson�Favard type inequality that
was proven in [4, Theorem 1.1]: Let w be a doubling weight on [&1, 1].
Then for every positive integer r there is a constant C depending only on r
and the doubling constant of w, such that for all g for which g(r&1) is locally
absolutely continuous on (&1, 1), we have

En(g)wn
�

C
nr &wn .rg(r)&. (2.4)

On applying this to any g, making use of

En( f )wn
�&wn( f &g)&+En(g)wn

,

and then taking infimum for all possible g we arrive at

En( f )wn
�CKr( f, 1�n)wn

,

and then (1.7) follows from (2.2).
With this (1.11) has also been verified, for every A* weight is also doubling.

Next we prove (1.12). We use the following Bernstein-type inequality (see
[3, (7.29)]): If w is an A* weight, then

&w.rP (r)
n &�Cnr &wPn& (2.5)

188 MASTROIANNI AND TOTIK



for all polynomials Pn of degree at most n with a constant C independent of
n and Pn that depends actually only on the A* constant of w.

Note that together with w also every wm is an A* with A* constant
independent of m, therefore (2.5) can be applied with w replaced by wm .

We have by (2.2)

|r
.( f, 1�n)wn

�C \&wn( f &Pn*)&+
1
nr &wn .r(Pn*) (r)&+ , (2.6)

where Pk* denotes the polynomial of degree at most k that approximates
best f with the weight wn (i.e., n in wn is fixed, and the degree k of Pk*
varies). Here the first term on the right is En( f )wn . Let 2m be the largest
possible power of 2 not bigger than n. With this m we write

Pn*=(Pn*&P*2m)+(P*2m&P*2m&1)+(P*2m&1&P*2m&1)+ } } } +(P1*&P0*)+P0*,

(2.7)

and then the second term in the previous inequality can be estimated via
the Bernstein inequality (2.5) with w replaced by wn :

Cn&r &wn .r(Pn*) (r)&�Cn&rnr &wn(Pn*&P*2m)&

+Cn&r :
m

k=1

2kr &wn(P*2k&P*2 k&1)&

+Cn&r &wn(P1*&P0*)&. (2.8)

Finally, if we subtract and add f, we can see that the norms in the sum on
the right are at most E2 k( f )wn

+E2k&1 ( f )wn
, and the terms before and after

the sum can be similarly handled. Thus, in view of (2.6), we have obtained

|r
.( f, 1�n)wn

�C \En( f )wn
+

1
nr :

m

k=0

2krE2 k ( f )wn
+

1
nr E0( f )wn+ ,

which can be written in the form

|r
.( f, 1�n)wn

�
C
nr :

m

k=0

(k+1)r&1 Ek( f )wn

using the monotonicity of Ek( f )wn
in k.

This is the inequality (1.13), and to prove (1.12) it remains to show that
the terms Ek( f )wn

on the right can be replaced by Ek( f )wk
. However, this

follows from (2.3) and the A* property of w, namely (2.3) and (1.10) imply
that if k�n then wn(x)�Cwk(x) for some constant C, and hence Ek( f )wn

�CEk( f )wk
.

With this the proof of Theorem 1.3 is complete.
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Finally, we prove (1.8). We need the following Bernstein-type inequality
for doubling weights.

Lemma 2.1. Let w be a doubling weight and r a natural number. There
is a constant C such that for all natural numbers n and all polynomials Pn

of degree at most n we have

&wn.rP (r)
n &�Cnr &wn Pn&. (2.9)

A warning is appropriate here: though this is the analogue of (2.5) for
wn , and though we have used in the proof above (2.5) for wn (and for A*
weights), we shall not be able to derive (1.8) with s=0 as in (1.21). The
problem is that (2.5) holds uniformly in wn instead of w if w is an A*, and
in (2.9) the n in wn and in Pn match each other, so e.g. even if k is much
smaller than n we could only assert

&wn.rP (r)
k &�Cnr &wn Pk&,

and not the same inequality with Ckr on the right (which follows from
(2.5) when w is an A* weight function). Therefore, even if we have (2.9) the
above proof of (1.12) needs modification. We shall first point out these
modifications, and then return to the proof of Lemma 2.1.

Let Pn** denote the best polynomial approximant to f with weight wn ;
i.e., now P2k** is taken with respect to the weight w2k and not with respect
to wn . Now follow the proof of (1.12) above everywhere replacing Pl* by
Pl**. It is easy to see that for l�n we have

2n(x)�2l (x)�
n2

l2 2n(x),

from which it immediately follows that

wn(x)�\n
l+

2

wl (x).

Furthermore, if ktl, then wk(x)twl (x), therefore Ek( f )wl
tEk( f )wk

if
ktl. Thus, we obtain instead of (2.8)

&wn.r(Pn**) (r)&�&wn.r(Pn**&P2m**) (r)&

+ :
m

k=1

&wn .r(P2k**&P**2k&1) (r)&

+&wn.r(P1**&P0**) (r)&
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�&wn.r(Pn**&P2m**) (r)&

+ :
m

k=1
\ n

2k+
2

&w2k .r(P2k**&P**2k&1) (r)&

+n2 &w1.r(P1**&P0**)(r)&.

Now here we can already apply the Bernstein inequality (2.9) to conclude

&wn.r(Pn**) (r)&�Cnr &wn(Pn**&P2 m**)&

+C :
m

k=1
\ n

2k+
2

2kr &w2k (P2 k**&P**2k&1)&

+Cn2 &w1(P1**&P0**)&,

and in a standard way this yields for r>2 the estimate

|r
. \f,

1
n+wn

�
C

nr&2 :
n

k=0

(k+1)r&3 Ek( f )wk
,

which is just a different form of (1.8).
This proves Theorem 1.1 pending the proof of Lemma 2.1.

Proof of Lemma 2.1. First we verify the statement for r=1.
The proof is based on the following lemma, for which see [3, (7.34)�(7.35)]:

Lemma 2.2. Let w be a doubling weight. Then there are polynomials Rn

of degree at most n such that

1
C

wn(x)�Rn(x)�Cwn(x), x # [&1, 1], (2.10)

and

.(x) |R$n(x)|�Cnwn(x), x # [&1, 1] (2.11)

with a constant C depending only on the doubling constant of w.

Now the proof of (2.9) for r=1 easily follows from (2.10) and (2.11). In
fact, on applying these and Bernstein's inequality (2.5) for w#1 we can
obtain from the formula P$nRn=(PnRn)$&PnR$n that

wn(x) .(x) |P$n(x)|�C.(x) |P$n(x) Rn(x)|

�C.(x) |(Pn(x) Rn(x))$|+C.(x) |Pn(x) R$n(x)|

�C2n &Pn Rn&+Cn |Pn(x) wn(x)|�Cn &wnPn &.
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Finally, we show that the r=1 case implies the general one. To this end
we need one more consequence of Lemma 2.2, namely that if w is a doubling
weight, then with In=[&1+1�n2, 1&1�n2] we have for all polynomials Pn

of degree at most n the inequality

&wnPn &�C &wnPn &In

with a constant C that depends only on the doubling constant of w. In fact,
from the classical Remez inequality (cf. [3, Sect. 5.1])

&Pn&�CM &Pn&IMn

valid for every M with a constant CM depending only on M we obtain with
the polynomials Rn from Lemma 2.2 that

&wnPn &�C &PnRn &�C &PnRn &In
�C &wnPn&In

.

Consider now the weights . jwn with 0� j�r. It easily follows from (1.6)
that these are doubling weights with doubling constants depending only
on r and the doubling constant of w. Furthermore (. jwn)n (x)t(.(x)+
1�n) j wn(x) for x # [&1, 1], and hence (. jwn)n (x)t.(x) j wn(x) for x # In ,
and otherwise .(x) j wn(x)�C(. jwn)n (x). Therefore, it follows from the
already proven r=1 case of (2.9) that

&wn.rP (r)
n &�C &.(wn.r&1)n P (r)

n &

�Cn &(wn.r&1)n P (r)
n &�Cn &(wn.r&1)n P (r&1)

n &In

�Cn &wn .r&1P (r&1)
n &.

Now this is already in the form that can be iterated, and r-fold iteration
gives (2.9), and with it the proof of Lemma 2.1, and also the proof of
Theorem 1.1, is complete. K

3. PROOF OF THEOREM 1.4

3.1. Proof of (1.21)

We start with the proof of

inf
deg(Pr&1)�r&1

&w( f &Pr&1)&Ij, 1�n
�

C
nr :

n

k=0

(k+1)r&1 Ek( f )w (3.1)

for any 1� j�N. Let us first consider the case when xj {\1 and when #j

is either not an integer, or it is an integer bigger than r.
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Let Pk be the best polynomial approximant of degree at most k of f with
weight w. We note first of all, that Bernstein's inequality (2.5) is true for w,
and therefore exactly as in the proof of Theorem 1.3 we obtain

&w.rP (r)
n &�C :

n

k=0

(k+1)r&1 Ek( f )w (3.2)

(recall that .(x)=- 1&x2).
It is clear that

inf
deg(Pr&1 )�r&1

&w( f &Pr&1)&Ij, 1�n

�&w( f &Pn)&+ inf
deg(Pr&1)�r&1

&w(Pn&Pr&1)&Ij, 1�n
. (3.3)

The first term on the right is En( f )w , and for the second term we apply the
following lemma (see [4, Lemma 2]):

Lemma A. Let r be a positive integer, a>0, and v(t)=|t|#, #>0, where
either #>r, or # is not an integer. Then for any function g for which g(r&1)

is locally absolutely continuous on [&a, a]"[0] there are polynomials Pr&1

of degree at most r&1 such that for x # [&1�n, 1�n], n�1�a

v(x) | g(x)&Pr&1(x)|�
Ca, r, #

nr (&vg(r)&[&a, a]+&vg&[&a, a]).

We apply this with the origin replaced by xj to g=Pn , #=#j and to
some small a such that in the interval [xj&a, x j+a] there are no further
xi 's. It follows that

inf
deg(Pr&1)�r&1

&w(Pn&Pr&1)&Ij, 1�n

�
C
nr (&wP (r)

n &[xj&a, xj+a]+&wPn &[xj&a, xj+a])

�
C
nr (&w.rP (r)

n &[xj&a, xj a]+&wPn&[xj&a, xj+a]),

where, in the last inequality, we used the fact that . is strictly positive on
[xj&a, x j+a]. Here the first term on the right is estimated by (3.2). As for
the second term, we have

&wPn&[xj&a, xj+a]�&wf &[xj&a, xj+a]+&w( f &Pn)&. (3.4)
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Collecting the estimates so far we can see that if A denotes the right hand
side of (3.1), then

inf
deg(Pr&1)�r&1

&w( f &Pr&1)&Ij, 1�n
�C \A+

1
nr &wf &+ . (3.5)

Now apply this to f &P0 instead of f. Notice that the left hand side does
not change, and nor does A, so we obtain

inf
deg(Pr&1)�r&1

&w( f &Pr&1)&Ij, 1�n
�C \A+

1
nr &w( f &P0)&+ . (3.6)

Since here the second term can be incorporated into A, we finally arrive
at (3.1).

Next we consider the case when still xj { \1, but #j is an integer not
bigger than r. We factor out q(x)=|x&xj |

#j from the weight, and set W(x)
=w(x)�q(x). We use again (3.3) and notice that in the second term on the
right hand side we can replace w(x) by q(x). Now consider the function
q(x) Pn(x). This vanishes at x j together with its first #j&1 derivatives, so
its Taylor polynomial of degree r&1 about xj contains the factor (x&xj)

#j,
and hence this Taylor polynomial is of the form (x&xj)

#j Pr&1(x) with a
polynomial of degree at most r&1 (actually smaller than r&#j). Thus, for
the second term on the right of (3.3) we obtain from the remainder formula
for Taylor polynomials

inf
deg(Pr&1)�r&1

&w(Pn&Pr&1)&Ij, 1�n
�

1
nr &(qPn) (r)&Ij, 1�n

.

Here we can insert W.r into the right hand side, for this factor is strictly
positive on the interval Ij, 1�n . Now we apply the decomposition (2.7) in the
form

qPn =(qPn&qP2m)+(qP2m&qP2m&1)+(qP2 m&1&qP2m&2)

+ } } } +(qP1&qP0)+qP0 ,

and use Bernstein's inequality with weight W as in (2.8) to obtain

Cn&r &W.r(qP2m) (r)&�Cn&rnr &W(qPn&qP2 m)&

+Cn&r :
m

k=0

2kr &W(qP2 k&qP2k&1)&

+Cn&r &WqP0&.
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Since here Wq#w, we obtain by the procedure applied after (2.8) that

inf
deg(Pr&1)�r&1

&w( f &Pr&1)&Ij, 1�n
�C \A+

1
nr &wP0&+ .

Finally, here the second term can be handled as in (3.4)�(3.6), and the
proof of (3.1) is complete in this case, as well.

Finally we consider (3.1) when xj is one of the endpoints, say xj=&1.
We use again (3.3), but now for estimating the second term on the right
hand side we use the following lemma (see [4, Lemma 3]) instead of
Lemma A:

Lemma B. Let r be a positive integer, a>0, v(t)=t#, #>0 and V(t)=
t#+r�2. Then for any function g for which g(r&1) is locally absolutely con-
tinuous on (0, a] and for every n�1�a there are polynomials Pr&1 of degree
at most r&1 such that for x # [0, 1�n2]

v(x) | g(x)&Pr&1(x)|�
C
nr (&Vg(r)&[0, a]+&vg&[0, a]), (3.7)

where C depends only on # and r.

Note that in this lemma there is no restriction on #, so in this case we
can have a unified proof of (3.1) irrespectively of the value of #j . We apply
this lemma with the origin replaced by &1 to the function Pn with #=#j .
Since |x+1| #jtw(x) and |x+1| #j+r�2

tw(x) .r(x), we can conclude (recall
that in the present case the Ij, 1�n is the interval [&1, &1, +1�n2])

inf
deg(Pr&1)�r&1

&w(Pn&Pr&1)&Ij, 1�n

�
C
nr (&w.rP (r)

n &[&1, &1+a]+&wPn&[&1, &1+a]),

and from here the proof is identical to the one used before.
With this the proof of (3.1) is complete.
Next we prove that for each 1� j�N&1 we have for |h|�1�n

&w(x) 2r
h.(x) f (x)&Jj, h

�
C
nr :

n

k=0

(k+1)r&1 Ek( f )w . (3.8)

On taking here the supremum for all |h|�1�n, and adding these estimates
together for all j we obtain that the main part modulus (i.e., the first sum
in |r

.( f, 1�n)*w , cf. (1.19)) is bounded by the right hand side of (3.8), and
this together with (3.1) yields (1.21).
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In forming 2r
h.(x) f (x) we take a linear combination of the function

values f (x+(r�2&s) h.(x)), 0�s�r. However, the norm of 2r
h.(x) f (x) is

taken only for values of x for which [x&(r�2) h.(x), x+(r�2) h.(x)]/Jj, h ,
and the definition of Jj, h shows that in this case for t # [x&(r�2) h.(x),
x+(r�2) h.(x)] we have

w(t)tw(x) and .(t)t.(x) (3.9)

uniformly in h and x. Therefore, we can freely exchange a value of w or .
for t # [x&(r�2) h.(x), x+(r�2) h.(x)] for another value in this same
interval.

Consider now the inequality

&w2r
h. f &Jj, h

�&w2r
h.( f &Pn)&Jj, h

+&w2r
h. Pn &Jj, h

, (3.10)

where Pn again denotes the best polynomial approximant of f of degree at
most n with weight w. As a first application of (3.9) we obtain that for
[x&(r�2) h.(x), x+(r�2) h.(x)]/Jj, h we have

w(x) |2r
h.(x)( f &Pn)(x)|

� :
r

s=0
\r

s+ w(x) }( f &Pn) \x+\ r
2

&s+ h.(x)+}
� :

r

s=0
\r

s+ Cw \x+\r
2

&s+ h.(x)+ }( f &Pn) \x+\r
2

&s+ h.(x)+}
�C2rEn( f )w . (3.11)

To estimate the second term in (3.10) we use (cf. [2, (2.4.5)]) that
2r

h.(x)Pn(x) equals

|
h.(x)�2

&h.(x)�2
} } } |

h.(x)�2

&h.(x)�2
P (r)

n (x+u1+ } } } +ur) du1 } } } dur ,

which in absolute value is at most

Chr(.(x))r &P (r)
n &[x&rh.(x)�2, x+rh.(x)�2] .

Thus,

|2r
h.(x)Pn(x)|�Chr(.(x))r &P (r)

n &[x&rh.(x)�2, x+rh.(x)�2] .

On multiplying this with w(x) and applying (3.9) we obtain

&w2r
h. Pn &Jj, h

�Chr &w.rP (r)
n &,
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and for the right hand side we can apply (3.2). Taking into account (3.10)
and (3.11) we can see that (3.8) is true, and the proof of (1.21) is complete.

3.2. Proof of (1.20)

We shall deduce (1.20) from Theorem 1.3.
Let �(x) be an infinitely differentiable function that is zero for negative

x, equals 1 for x>1 and otherwise 0��(x)�1, and let Pr&1, j be the best
polynomial approximant of degree at most r&1 of f with weight w on the
interval Ij, 1�n . We set (for a verbal description of the following expression
see the discussion below)

g(x)=Pr&1, 1(x) \1&� \2n2 \x&\&1+
1

4n2++++
+ f (x) � \2n2 \x&\&1+

1
4n2+++ \1&� \2n \x&\x2&

1
n++++

+Pr&1, N� \2n2 \x&\1&
3

4n2+++
+ f (x) � \x&\xN&1+

1
2n++\1&� \2n2 \x&\1&

3
4n2++++

+ :
N&1

j=2

Pr&1(x) � \2n \x&\xj&
1
n+++\1&� \2n \x&\xj+

1
2n++++

+ :
N&2

j=2

f (x) � \2n \x&\xj+
1
2n+++\1&� \2n \x&\xj+1&

1
n++++ .

This function coincides with f outside �N
j=1 Ij, 1�n , coincides with Pr&1, j on

the interval Ij, 1�2n , and on the intervals [xj&1�n, xj&1�2n] and [x j+1�2n,
xj+1�n] it is a convex combination of these two functions (with obvious
modification if xj=\1). Thus, f &g is zero on �N1

j=1
Jj, 1�n , and on the

interval Ij, 1�n we have | f &g|=|/j*( f &Pr&1, j)| with a / j* lying between 0
and 1, and so by the definition of the modulus of continuity |r

.( f; {)*w we
have

&w( f &g)&�|r
.( f; 1�n)*w . (3.12)

Let now |h|�1�10rn. We have to estimate 2r
h.(x)g(x) in three different

ranges.

v Since g equals a polynomial of degree at most r&1 on each of
the intervals Ij, 1�2n , it follows that 2r

h.(x) g(x) is zero if the interval
[x&rh.(x)�2, x+rh.(x)�2] does not belong to any of the intervals Jj, h

(which means that it must belong to some Ij, 1�2n)
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v If [x&rh.(x)�2, x+rh.(x)�2] belongs to any of the Jj, 1�n , then
2r

h.(x) g(x) equals 2 r
h.(x) f (x).

v Finally, in the remaining case there is a j such that

[x&rh.(x)�2, x+rh.(x)�2] & [xj&2�n, xj&1�2n]{03

or

[x&rh.(x)�2, x+rh.(x)�2] & [xj+1�2n, xj+2�n]{03

(with obvious modification when xj=\1). Consider for example, the latter
case. On the interval [xj+1�4n, xj+3�n], that contains [x&rh.(x)�2,
x+rh.(x)�2], we can apply (3.9) to conclude that

w(x) |2r
h.(x) g(x)|�w(x) |2r

h.(x) f (x)|+w(x) |2r
h.(x)( f &g)(x)|

�w(x) |2r
h.(x) f (x)|+C &w( f &g)&[xj+1�4n, xj+3�n] .

Note that in the last two ranges we have wn(x)tw(x), and in the first
range, when this is not satisfied, the r-th difference 2r

h.(x)g(x) is actually
zero. Therefore, from the consideration above we can deduce that

&wn(x) 2r
h.(x) g(x)&� :

N

j=1

&w(x) 2r
h.(x) f (x)&Jj, h

+C &w( f &g)&.

Since this is true for all |h|�1�10rn, we obtain from (3.12) and the defini-
tion of our moduli of smoothness that

|r
. \g,

1
10rn+wn

�C|r
. \f;

1
n+

*

w
.

Using this and (2.2) twice it follows that

|r
. \g,

1
n+wn

�CKr \g,
1
n+�C(10r)r Kr \g,

1
10rn+wn

�C1|r
. \g,

1
10rn+wn

�C2 |r
. \f,

1
n+

*

w
,

where the second inequality is an immediate consequence of the definition
of the K-functional (see (2.1)).
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Now this inequality, (3.12) and Theorem 1.3 yield

En( f )w �&w( f &g)&+En(g)w�&w( f &g)&+CEn(g)wn

�&w( f &g)&+C|r
. \g,

1
n+wn

�C|r
. \f,

1
n+

*

w
,

where, at the second inequality we also used that w(x)�Cwn(x) for some C.
This completes the proof.
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